

anamnesis documentation

Contents:

	Tutorials
	Serialisation

	MPI

	Module reference
	Serialisation

	Class Registration

Introduction

anamnesis is a python module which provides the ability to easily
serialise/unserialise Python classes to and from the HDF5 file format.
It aims to be trivial to incorporate (normally requiring only a single
extra class variable to be added to your classes) and flexible.

The library also extends the HDF5 serialisation/unserialisation
capabilities to the MPI framework. This allows objects to be trivially
passed between nodes in an MPI computation. The library also provides
some wrapper routines to make it simpler to perform scatter and
gather operations on arrays and lists (lists may even contain
objects to be transferred).

anamnesis was originally written as part of the NeuroImaging Analysis
Framework, a library intended for use in MEG theory work written at
York NeuroImaging Centre, University of York, UK, but it has been split
out in order to make it more generically useful.

Indices and tables

	Index

	Module Index

	Search Page

Tutorials

Serialisation

	Tutorial 1 - Using a Simple Serialised Object

	Tutorial 2 - More advanced serialisation features

	Tutorial 3 - AnamCollections - dealing with many similar objects

	Tutorial 4 - The Store class - saving data quickly

MPI

	Tutorial 1 - Broadcasting classes using MPI

	Tutorial 2 - Sending to/from different nodes

	Tutorial 3 - Scattering and Gathering data

Tutorial 1 - Using a Simple Serialised Object

The simplest use of anamnesis allows the serialisation of classes to and from hdf5
with relatively little extra code.

In order to both reading to and writing from HDF5 files to work, there are
four basic steps

	Inherit from the anamnesis.AbstractAnam class and call the class constructor

	Ensure that your class constructor (__init__) can be called with no arguments (you may
pass arguments to it but they must have default values)

	Call the anamnesis.register_class function with the class

	Populate the hdf5_outputs class variable with a list of member variable names necessary for serialisation/de-serialisation

Note that anamnesis uses the fully qualified class name when autoloading during
the unserialising (loading) of object. If you want to use locally defined
classes, you will have to ensure that they have been manually imported. For
our examples, we will place our classes in the files test_classesX.py (where
X is an ineger) and ensure that we can import this file into Python (i.e. it is
on the PYTHONPATH or in the current working directory).

Our first example class is going to be a simple model of a person’s name
and age. We place the following code in test_classes1.py

#!/usr/bin/python3

from anamnesis import AbstractAnam, register_class

class SimplePerson(AbstractAnam):

 hdf5_outputs = ['name', 'age']

 def __init__(self, name='Unknown', age=0):
 AbstractAnam.__init__(self)

 self.name = name
 self.age = age

register_class(SimplePerson)

If we examine the person group in the HDF5 file, we can see that the
class member variables:

[image: ../_images/test_classes1.png]
We can now write a script which will serial our data into an HDF5 file.
We specify the group name when writing out.

#!/usr/bin/python3

import h5py

from test_classes1 import SimplePerson

Create a person
s = SimplePerson('Fred', 42)

print(s.name)
print(s.age)

Serialise the person to disk
f = h5py.File('test_script1.hdf5', 'w')
s.to_hdf5(f.create_group('person'))
f.close()

And write another script which loads the class back in. Because this
class is not registered, we need to make sure that we have imported
the module first. First of all, we can load from the file; if
we know there is only one group in the file, we do not even need
to specify the group name:

#!/usr/bin/python3

from anamnesis import obj_from_hdf5file

import test_classes1 # noqa: F401

Load the class from the HDF5 file
s = obj_from_hdf5file('test_script1.hdf5')

Show that we have reconstructed the object
print(type(s))
print(s.name)
print(s.age)

Demonstrate how to specifically choose which group to load
s2 = obj_from_hdf5file('test_script1.hdf5', 'person')

Show that we have reconstructed the object
print(type(s))
print(s.name)
print(s.age)

If we want to load multiple objects from the same HDF5 file, we can
open the file once and then use a function which loads from
the group of the opened file. We can also tell anamnesis that
it should autoload modules which start with a certain name.
Both of these possibilities are demonstrated in the script
test_script1_read_B.py:

#!/usr/bin/python3

import h5py

from anamnesis import obj_from_hdf5group, ClassRegister

Register our class prefix so that we autoload our objects. This
allows loading all classes whose fully resolved name
starts with test_classes1; e.g. test_classes1.SimplePerson
ClassRegister().add_permitted_prefix('test_classes1')

Open our HDF5 file
f = h5py.File('test_script1.hdf5', 'r')

Load the class from the HDF5 file using our
obj_from_hdf5group method
s = obj_from_hdf5group(f['person'])

Show that we have reconstructed the object
print(type(s))
print(s.name)
print(s.age)

Close our HDF5 file
f.close()

Tutorial 2 - More advanced serialisation features

Anamnesis has support for some more advanced features regarding serialisation.

In the main, most people will not require these, however they are used in
NAF (the project from which anamnesis was extracted).

These features can be best described by the name of the member variables
or function names which are used to configure them.

One thing to note is that anamnesis implicitly reserves the use of these
names for its own functionality. Note that any future additions will
use the prefixes hdf5_ or anam_. In order to avoid clashes with
future versions of anamnesis, avoid using variables or function names
with these prefixes.

	hdf5_defaultgroup (member variable)

	hdf5_aliases (member variable)

	hdf5_mapnames (member variable)

	extra_data (member variable)

	extra_bcast (member variable)

	init_from_hdf5 (member function)

	refs (member variable)

	shortdesc (member variable)

The example classes used in this tutorial are placed in test_classes2.py.

#!/usr/bin/python3

from anamnesis import AbstractAnam, AnamCollection, register_class

class CollectableSubjectStats(AbstractAnam):

 hdf5_outputs = ['zstats', 'rts']

 hdf5_defaultgroup = 'subjectstats'

 def __init__(self, zstats=None, rts=None):
 """
 zstats must be a numpy array of [width, height] dimensions
 rts must be a numpy array of [ntrials,] dimensions
 """
 AbstractAnam.__init__(self)

 self.zstats = zstats
 self.rts = rts

register_class(CollectableSubjectStats)

class StatsCollection(AnamCollection):
 anam_combine = ['zstats', 'rts']

register_class(StatsCollection)

All of the files needed to run these examples are generated by the script
test_script2_write.py. This is also where several examples of the actual
usage of the variables within classes can be seen.

#!/usr/bin/python3

import shutil

import h5py

from test_classes2 import (ComplexPerson,
 ComplexPlace,
 ComplexTrain)

Create a person and a place
s = ComplexPerson('Anna', 45)

print(s.name)
print(s.age)

loc = ComplexPlace('York')
print(loc.location)

t = ComplexTrain('Glasgow')
print(t.destination)

Serialise the person and place to disk
f = h5py.File('test_script2.hdf5', 'w')
s.to_hdf5(f.create_group(s.hdf5_defaultgroup))
loc.to_hdf5(f.create_group(loc.hdf5_defaultgroup))
t.to_hdf5(f.create_group(t.hdf5_defaultgroup))
f.close()

Serialise the person to disk using a different name
To do this, we copy the HDF5 file and manually edit it
shutil.copyfile('test_script2.hdf5', 'test_script2_aliases.hdf5')
f = h5py.File('test_script2_alias.hdf5', 'a')
f['person'].attrs['class'] = 'test_classes2.OldComplexPerson'
f.close()

hdf5_defaultgroup

This variable is usually used when serialising a single instance of a class
into and out of an HDF5 file. Its use obviates the need to specify a group
name when reading from an HDF5 file using the from_hdf5file function.

E.g., if we have two classes, one of which has an hdf5_defaultgroup
set to person and the other to place, we can load each of the
instances without specifying where they are in the file, as follows:

#!/usr/bin/python3

from test_classes2 import ComplexPerson, ComplexPlace # noqa: F401

Load the classes from the HDF5 file using
the default hdf5group names
s = ComplexPerson.from_hdf5file('test_script2.hdf5')
loc = ComplexPlace.from_hdf5file('test_script2.hdf5')

Show that we have reconstructed the object
print("Person")
print(type(s))
print(s.name)
print(s.age)

print("Place")
print(type(loc))
print(loc.location)

hdf5_aliases

hdf5_aliases is a list wihch allows developers to specify additional class
names which should be matched by the given class. As an example, if
hdf5_aliases in the test_classes2.ComplexPerson class is set
to [‘test_classes2.OldComplexPerson’], any files which were created
using the old class name (OldComplexPerson) will now be read using the
ComplexPerson class instead:

#!/usr/bin/python3

from anamnesis import obj_from_hdf5file

import test_classes2 # noqa: F401

Demonstrate reading a file which has the old class name
in the HDF5 file
s = obj_from_hdf5file('test_script2_aliases.hdf5', 'person')

Show that we have reconstructed the object
print("Person")
print(type(s))
print(s.name)
print(s.age)

hdf5_mapnames

hdf5_mapnames is a rather specialised variable for which most users will
not have a use. It allows users to control the mapping of variable names
into and out of the HDF5 file - in other words, it decouples the names
of the groups and attributes in the HDF5 file from those in the Python class.

As a concrete example, let us say that we are using a Python class which
has a variable called _order but that for neatness sake, we would rather
that this was called order in the HDF5 file. In this case, we would define
the hdf5_mapnames variable as follows.

`
hdf5_mapnames = {'_order': 'order'}
hdf5_outputs = ['_order']
`

Note that hdf5_mapnames is a dictionary which maps Python class names to HDF5
entry names and that we still list the original variable name in
hdf5_outputs.

You can have as many mappings as you want, but be very
careful not to have a name in both hdf5_outputs and as a target in
hdf5_mapnames. I.e., this is bad (assuming that your class has
member variables _order and myvariable

`
Don't do this
hdf5_mapnames = {'_order': 'myvariable'}
hdf5_outputs = ['myvariable']
`

For (hopefully) obvious reasons, this makes no sense as you are attempting
to serialise both the _order and myvariable variables into the HDF5
entry with name myvariable. Don’t Do This (TM).

extra_data

The extra_data variable is a dictionary which can be used by users of a class
to serialise and unserialise additional data which is not normally saved by the
object.

To use this, simply use the extra_data as a standard dictionary, for example:

#!/usr/bin/python3

import h5py
from anamnesis import obj_from_hdf5file

from test_classes2 import ComplexPerson

Create an example object
p = ComplexPerson('Bob', 75)
p.extra_data['hometown'] = 'Oxford'

print(p)
print(p.extra_data)

Save the object out
f = h5py.File('test_script2_extradata.hdf5', 'w')
p.to_hdf5(f.create_group(p.hdf5_defaultgroup))
f.close()

Delete our object
del p

Re-load our object
p = obj_from_hdf5file('test_script2_extradata.hdf5')

Show that we recovered the object and the extra data
print(p)
print(p.extra_data)

extra_bcast

The extra_bcast variable is a list of member variable names similar to that
in the main hdf5_outputs variable. The difference is that variables listed
in extra_bcast will be transferred via MPI when the object is sent or broadcast,
but will not be placed into the HDF5 file during serialisation/unserialisation.

The most common use of this is when there is some cached information in the class
which you do not want to recompute on every MPI node but do not need to save
into the HDF5 file. In this case, the name of the variable containing the cache
would not be listed in hdf5_outputs but would be listed in extra_bcast.
It is also possible in that instance that you would wish to use the init_from_hdf5
function as documented below.

init_from_hdf5

The optional function init_from_hdf5 is called after the object has has its
members loaded when it is being unserialized from an HDF5 file. This means
that you can perform any post-processing which you find necessary; for instance,
if a class has a cache which needs updating after it is reinitialised (because
it is not necessary to serialize/unserialize it), you can use this function to
do so. To see how this works, look at the example class ComplexTrain in
the test_modules2.py file shown above and examine the output from the
test_script2_initfromhdf5.py script which uses this class:

#!/usr/bin/python3

from anamnesis import obj_from_hdf5file

from test_classes2 import ComplexPerson # noqa: F401

Load the train object and watch for the printed output from the
init_from_hdf5 function
p = obj_from_hdf5file('test_script2.hdf5', 'train')

refs

Full use of this variable requires the addition of anamnesis’ report functionality.
This will be ported from NAF soon.

shortdesc

Full use of this variable requires the addition of anamnesis’ report functionality.
This will be ported from NAF soon.

Tutorial 3 - AnamCollections - dealing with many similar objects

The AnamCollection code is designed to make it easy to deal with
situations where you have many of the same type of class and
want to perform analysis across them. For instance, in a
sliding-window analysis, you may have a class which implements
model fitting and metric measurement for a given window. You
can then use an AnamCollection to easily collate the
results together. You can consider AnamCollection to be
a list of objects with additional helper functions to assist
with the collation of data and HDF5 serialisation/deserialisation.

In general, you will want to subclass AnamCollection to use
it. An example can be found in test_classes3.py:

#!/usr/bin/python3

from anamnesis import AbstractAnam, AnamCollection, register_class

class CollectableSubjectStats(AbstractAnam):

 hdf5_outputs = ['zstats', 'rts']

 hdf5_defaultgroup = 'subjectstats'

 def __init__(self, zstats=None, rts=None):
 """
 zstats must be a numpy array of [width, height] dimensions
 rts must be a numpy array of [ntrials,] dimensions
 """
 AbstractAnam.__init__(self)

 self.zstats = zstats
 self.rts = rts

register_class(CollectableSubjectStats)

class StatsCollection(AnamCollection):
 anam_combine = ['zstats', 'rts']

register_class(StatsCollection)

In this case, we have two variables, each of which will be a
numpy array. The AnamCollection class is specifically
designed for use with numpy arrays.

As an example of using this class when writing, you can see
test_script3_write.py:

#!/usr/bin/python3

import h5py
import numpy as np

from test_classes3 import CollectableSubjectStats, StatsCollection

Create a collection to put our data into
collection = StatsCollection()

Simulate 5 peoples worth of data
for person in range(5):
 # 10x10 zstats - low resolution image!
 zstats = np.random.randn(10, 10)
 # 100 trials - averaging 450ms
 rts = np.random.randn(100) * 450.0

 p = CollectableSubjectStats(zstats, rts)

 collection.append(p)

Write the data to a file
f = h5py.File('test_script3.hdf5', 'w')
collection.to_hdf5(f.create_group('data'))
f.close()

Note that objects can be appended into the collection object
using the normal .append() method and then be written
into an HDF5 file as normal.

When using a AnamCollection derived object, the simplest
form of use is to treat it as a list which will let you
retrieve the objects stored within it. This can
be seen in the first few lines of the script below.

In addition, if you request any of the members which
are referred to in the anam_combine member variable
on the collection, the class will collate all of the instances
of the identically named variable from the objects in the
list and return an object which has these objects stacked.
In most cases, you will use this with numpy arrays - you
will then end up with a numpy array with an additional
dimension. I.e., if each object has a numpy array of
dimension (10, 10) and you have 3 objects, the combined
array will have size (10, 10, 3). The objects are
accessed by just accessing it as a member variable; for instance,
if the name data was in anam_combine and your collection
was named collection, you could access the combined data
by accessing collection.data. Note that this member
will only be available once you have called the update_cache()
function on the collection - this is for reasons of efficiency.
Therefore, after modifying, adding or deleting members in the list,
you should call update_cache(). There is also a clear_cache()
function but it is rarely used.

For a full example, see test_script3_read.py:

#!/usr/bin/python3

from anamnesis import obj_from_hdf5file

import test_classes3 # noqa: F401

Load our collection of data
c = obj_from_hdf5file('test_script3.hdf5')

Demonstrate how we have access to each individual object
for p in c.members:
 print(p.zstats.shape, p.zstats.min(), p.zstats.max())

Make sure that our cache is up-to-date before we demonstrate
the stacked data methods
c.update_cache()

Demonstrate that we have access to stacked versions of the data
print(c.zstats.shape)
print(c.rts.shape)

Tutorial 4 - The Store class - saving data quickly

The anamnesis.Store class can be used as a very simple way of storing data
without having to define your own class.

To use the Store class, you simply have to place any data which you
want to serialise into the extra_data member variable.

As usual with the tutorials, we start with a script which creates an example
test file: test_script4_write.py:

#!/usr/bin/python3

import h5py

from anamnesis import Store

Create a Store
s = Store()

s.extra_data['airport_from'] = 'Manchester'
s.extra_data['airport_to'] = 'Schipol'

Write the store into a file
f = h5py.File('test_script4.hdf5', 'w')
s.to_hdf5(f.create_group('data'))
f.close()

Reading back a Store

Reading back a Store is no different to reading any other anamnesis object
as can be seen in test_script4_read.py.

#!/usr/bin/python3

from anamnesis import obj_from_hdf5file

Read from our store
s = obj_from_hdf5file('test_script4.hdf5')

print(s.extra_data['airport_from'])
print(s.extra_data['airport_to'])

Tutorial 1 - Broadcasting classes using MPI

As well as serialisation to and from HDF5, Anamnesis provides wrapper functionality
to allow information to be sent between MPI nodes.

The use of the MPI functions in anamnesis requires the availability of the
mpi4py module. If this is not available, you will not be able to use
the MPI functions fully. You can, however, set use_mpi=True when creating
the MPIHandler() object (see below) and then continue to use the functions.
This allows you to write a single code base which will work both when doing
multi-processing using MPI and running on a single machine.

The MPI functions require the same setup (primarily the hdf5_outputs class variable)
as are used for the HDF5 serialisation / unserialisation, so we suggest that you
work through the Serialisation tutorials first.

We are going to re-use some of the classes from the previous example.
We place this code in test_mpiclasses.py

#!/usr/bin/python3

from anamnesis import AbstractAnam, register_class

class ComplexPerson(AbstractAnam):

 hdf5_outputs = ['name', 'age']

 hdf5_defaultgroup = 'person'

 def __init__(self, name='Unknown', age=0):
 AbstractAnam.__init__(self)

 self.name = name
 self.age = age

register_class(ComplexPerson)

class ComplexPlace(AbstractAnam):

 hdf5_outputs = ['location']

 hdf5_defaultgroup = 'place'

 def __init__(self, location='Somewhere'):
 AbstractAnam.__init__(self)

 self.location = location

register_class(ComplexPlace)

class ComplexTrain(AbstractAnam):

 hdf5_outputs = ['destination']

 hdf5_defaultgroup = 'train'

 def __init__(self, destination='Edinburgh'):
 AbstractAnam.__init__(self)

 self.destination = destination

 def init_from_hdf5(self):
 print("ComplexTrain.init_from_hdf5")
 print("We have already set destination: {}".format(self.destination))

register_class(ComplexTrain)

We now write a simple Python script which uses the Anamnesis MPI interface. We
will design this code so that the master node creates an instance of two of the
classes and the slave nodes receive copies of these.

#!/usr/bin/python3

from anamnesis import MPIHandler

from test_mpiclasses import ComplexPerson, ComplexPlace, ComplexTrain

All nodes must perform this
m = MPIHandler(use_mpi=True)

if m.rank == 0:
 # We are the master node
 print("Master node")

 # Create a person, place and train to broadcast
 s_person = ComplexPerson('Fred', 42)
 s_place = ComplexPlace('York')
 s_train = ComplexTrain('Disastersville')

 print("Master: Person: {} {}".format(s_person.name, s_person.age))
 print("Master: Place: {}".format(s_place.location))
 print("Master: Train to: {}".format(s_train.destination))

 m.bcast(s_person)
 m.bcast(s_place)
 m.bcast(s_train)

else:
 # We are a slave node
 print("Slave node {}".format(m.rank))

 # Wait for our objects to be ready
 s_person = m.bcast()
 s_place = m.bcast()
 s_train = m.bcast()

 print("Slave node {}: Person: {} {}".format(m.rank, s_person.name, s_person.age))
 print("Slave node {}: Place: {}".format(m.rank, s_place.location))
 print("Slave node {}: Train: {}".format(m.rank, s_train.destination))

We need to make sure that we finalise MPI otherwise
we will get an error on exit
m.done()

To run this code, we need to execute it in an MPI environment. As usual, make
sure that anamnesis is on the PYTHONPATH.

We can then call mpirun directly:

$ mpirun -np 2 python3 test_script1.py

Master node
Master: Person: Fred 42
Master: Place 1: York
Slave node 1
Master: Place 2: Glasgow
Slave node 1: Person: Fred 42
Slave node 1: Place 1: York
Slave node 1: Place 2: Glasgow

If you are using a cluster of some form (for instance gridengine), you
will need to make sure that you have a queue with MPI enabled and that
you submit your job to that queue. Gridengine in particular has
good tight MPI integration which will transparently handle setting
up the necessary hostlists.

The first thing which we need to do in the script is to initalise our
MPIHandler. This is a singleton object and the use_mpi argument
is only examined on the first use. This means that in future calls,
you can call it without passing any argument.

m = MPIHandler(use_mpi=True)

In MPI, each instance of the script gets given a node number. By convention,
we consider node 0 as the master node. All other nodes are designated as
slave nodes. In order to decide whether we are the master node, we can
therefore check whether our rank (stored on our MPIHandler object) is
0.

If we are the master, we then create three objects (a Person, a Place
and a Train), set their attributes and print them out for reference.
We then broadcast each of them in turn to our slave node or nodes.

On the slave node(s), we simply wait to receive the objects which are
being sent from the master. There are two things to note. First, we
do not need to specify the object type on the slave, this information
is included in the MPI transfer. Second, we must make sure that
our transmit and receive code is lined up; i.e. if we broadcast three
items, every slave must receive three items. Code errors of this form
are one of the most common MPI debugging problems. Try and keep your
transmit / receive logic tidy and well understood in order to avoid
long debugging sessions [#f1].

Once we have recieved the objects, we can simply use them as we normally
would. Note that the objects are not shared before the two processes,
you now have two distinct copies of each object.

Finally, it is important to call the MPIHandler.done() method to
indicate to the MPI library that you have successfully finished.

Fotenotes

	1

	Note that mpi4py under Python3 has an unfortunate tendency to
swallow error messages which can make debugging frustrating.
This seems to have got worse since the python2 version.
Any suggestions as to how to improve this situation would be
gratefully recieved by the anamnesis authors.

Tutorial 2 - Sending to/from different nodes

In many cases, we will not want to send data just from the master
node to all other nodes. We can use a combination of bcast, send
and recv to flexibly send around objects.

Again, for this example we are going to re-use some of the classes from the
previous example which must be in test_mpiclasses.py (see Tutorial 1
for details).

Our new script looks like this:

#!/usr/bin/python3

import sys

from anamnesis import MPIHandler

from test_mpiclasses import ComplexPerson, ComplexPlace, ComplexTrain

All nodes must perform this
m = MPIHandler(use_mpi=True)

We need at least three nodes for this
if m.size < 3:
 print("Error: This example needs at least three MPI nodes")
 m.done()
 sys.exit(1)

if m.rank == 0:
 # We are the master node
 print("Master node")

 # Create a person to broadcast
 s_person = ComplexPerson('Fred', 42)

 print("Master: Created Person: {} {}".format(s_person.name, s_person.age))

 m.bcast(s_person)

 s_place = m.bcast(root=1)

 print("Master: Recieved Place: {}".format(s_place.location))

elif m.rank == 1:
 # We are slave node 1
 print("Slave node {}".format(m.rank))

 # Wait for our broadcast object to be ready
 s_person = m.bcast()

 print("Slave node {}: Recieved Person: {} {}".format(m.rank, s_person.name, s_person.age))

 # Now create our own object and broadcast it to the other nodes
 s_place = ComplexPlace('Manchester')

 print("Slave node {}: Created place: {}".format(m.rank, s_place.location))

 m.bcast(s_place, root=1)

 s_train = m.recv(source=2)

 print("Slave node {}: Received Train: {} {}".format(m.rank, s_person.name, s_person.age))

else:
 # We are slave node 2
 print("Slave node {}".format(m.rank))

 # Wait for our first broadcast object to be ready
 s_person = m.bcast()

 print("Slave node {}: Received Person: {} {}".format(m.rank, s_person.name, s_person.age))

 # Wait for our second broadcast object to be ready
 s_place = m.bcast(root=1)

 print("Slave node {}: Received Place: {}".format(m.rank, s_place.location))

 # Create a train and send to node 1 only
 s_train = ComplexTrain('Durham')

 print("Slave node {}: Created train: {}".format(m.rank, s_train.destination))

 m.send(s_train, dest=1)

We need to make sure that we finalise MPI otherwise
we will get an error on exit
m.done()

Again, we need to run this code under an MPI environment (refer back to
Tutorial 1 for details). We will get the following output:

Master node
Master: Created Person: Fred 42
Slave node 1
Slave node 2
Slave node 1: Recieved Person: Fred 42
Slave node 1: Created place: Manchester
Slave node 2: Received Person: Fred 42
Slave node 2: Received Place: Manchester
Master: Recieved Place: Manchester
Slave node 2: Created train: Durham
ComplexTrain.init_from_hdf5
We have already set destination: Durham
Slave node 1: Received Train: Fred 42

In order, our script does the following:

	Set up MPI

	Create a Person on node 0 (master) and bcast it to nodes 1 and 2

	Create a Place on node 1 and bcast it to nodes 0 and 1

	Create a Train on node 2 and send it to node 1 only (on which we call recv)

Using these examples, you should be able to see how we can flexibly send
objects around our system.

Tutorial 3 - Scattering and Gathering data

Scattering and gathering numpy arrays

As well as broadcasting and transferring objects, we may wish to split data up
for analysis. This is done using the scatter_array and gather functions.

In this script, we look at two ways of scattering data and then how to
gather the data back up for consolidation:

#!/usr/bin/python3

import sys

import numpy as np

from anamnesis import MPIHandler

All nodes must perform this
m = MPIHandler(use_mpi=True)

We need at least three nodes for this
if m.size < 3:
 print("Error: This example needs at least three MPI nodes")
 m.done()
 sys.exit(1)

Create a matrix of data for scattering
Pretend that we have 300 points of data which we want to scatter,
each of which is a vector of dimension 20

This creates a matrix containing 0-19 in row 1,
100-119 in row 2, etc
data_dim = 20
num_pts = 300

if m.rank == 0:
 # We are the master node
 print("Master node")

 data = np.tile(np.arange((num_pts)) * 100, (data_dim, 1)).T + np.arange(data_dim)[None, :]

 print("Master node: Full data array: ({}, {})".format(*data.shape))

 # 1. Scatter using scatter_array
 m1_data = m.scatter_array(data)

 print("Master node M1: m1_data shape: ({}, {})".format(*m1_data.shape))

 # 2. Scatter manually, using indices

 # Send the data to all nodes
 m.bcast(data)

 # Calculate which indices each node should work on and send them around
 scatter_indices = m.get_scatter_indices(data.shape[0])
 m.bcast(scatter_indices)

 indices = range(*scatter_indices[m.rank])

 m2_data = data[indices, :]

 print("Master node M2: m2_data shape: ({}, {})".format(*m2_data.shape))

 # 3. Gather using the gather function

 # Create some fake data to gather
 ret_data = (np.arange(m2_data.shape[0]) + m.rank * 100)[:, None]

 print("Master node: data to gather shape: ({}, {})".format(*ret_data.shape))
 print("Master node: first 10 elements: ", ret_data[0:10, 0])

 all_ret_data = m.gather(ret_data)

 print("Master node: gathered data shape: ({}, {})".format(*all_ret_data.shape))

 print("all_ret_data 0:10: ", all_ret_data[0:10, 0])
 print("all_ret_data 100:110: ", all_ret_data[100:110, 0])
 print("all_ret_data 200:210: ", all_ret_data[200:210, 0])

else:
 # We are a slave node
 print("Slave node {}".format(m.rank))

 # 1. Scatter using scatter_array
 m1_data = m.scatter_array(None)

 print("Slave node {} M1: data shape: ({}, {})".format(m.rank, *m1_data.shape))

 # 2. Scatter manually, using indices
 # Recieve the full dataset
 data = m.bcast()

 # Get our indices
 scatter_indices = m.bcast()

 # Extract our data to work on
 indices = range(*scatter_indices[m.rank])

 m2_data = data[indices, :]

 print("Slave node {} M2: data shape: ({}, {})".format(m.rank, *m2_data.shape))

 # 3. Gather using the gather function

 # Create some fake data to gather
 ret_data = (np.arange(m2_data.shape[0]) + m.rank * 100)[:, None]

 print("Slave node {}: data to gather shape: ({}, {})".format(m.rank, *ret_data.shape))
 print("Slave node {}: first 10 elements: ".format(m.rank), ret_data[0:10, 0])

 m.gather(ret_data)

We need to make sure that we finalise MPI otherwise
we will get an error on exit
m.done()

Scattering Method 1: scatter_array

The simplest way to scatter data is to use the scatter_array function. This
function always operates on the first dimension. I.e., if you have three nodes
and a dataset of size (100, 15, 23), the first node will receive data of size
(34, 15, 23) and the remaining two nodes (33, 15, 23).

The code will automatically split the array unequally if necessary.

Scattering Method 2: indices

It is sometimes more useful to broadcast an entire dataset to all nodes using
bcast and then have the nodes split the data up themselves (for instance, if
they need all of the data for part of the computation but should only work
on some of the data for the full computation).

To do this, we can use the get_scatter_indices function. This must be called
with the size of the data which we are “scattering”. In the example in the text
above, we would call this function with the argument 100. The function then
returns a list containing a set of arguments to pass to the range function.
In the example above, this would be:

[(0, 34), (34, 67), (67, 100)]

There is an entry in the list for each MPI node. We broadcast this list to
all MPI nodes which are then responsible for extracting just the part of the
data required, for example (assuming that m is our MPIHandler):

all_indices = m.bcast(None)

my_indices = range(*all_indices[m.rank])

Note that these indices are congruent with the indices used during gather,
so you can safely gather data which has been manually collated in this way.

Gathering numpy arrays

Gathering arrays is straightforward. Use the gather function, passing the
partial array from each node. There is an example of this in
test_script3a.py above. (Note that by default, the data is gathered to the
root node).

Scattering and gathering lists

Scattering and gathering lists is similar to the process for arrays. There are
two differences. The first is that you need to use the scatter_list and
gather_list routines. The second is that the gather_list routine needs
to be told the total length of the combined list, and on nodes where you
want to receive the full list (including the master), you must pass
return_all as True (the default is False).

An example script can be seen below:

#!/usr/bin/python3

import sys

from anamnesis import MPIHandler

All nodes must perform this
m = MPIHandler(use_mpi=True)

We need at least three nodes for this
if m.size < 3:
 print("Error: This example needs at least three MPI nodes")
 m.done()
 sys.exit(1)

Create a list of data for scattering
Pretend that we have 300 points of data which we want to scatter
num_pts = 300

if m.rank == 0:
 # We are the master node
 print("Master node")

 data = [str(x) for x in range(num_pts)]

 print("Master node: Full data array: len: {}".format(len(data)))

 # Scatter using scatter_list
 m1_data = m.scatter_list(data)

 print("Master node M1: m1_data len: {}".format(len(m1_data)))

 # Gather list back together again
 all_ret_data = m.gather_list(m1_data, num_pts, return_all=True)

 print("Master node: gathered list len: {}".format(len(all_ret_data)))

 print("all_ret_data 0:10: ", all_ret_data[0:10])
 print("all_ret_data 100:110: ", all_ret_data[100:110])
 print("all_ret_data 200:210: ", all_ret_data[200:210])

else:
 # We are a slave node
 print("Slave node {}".format(m.rank))

 # Scatter using scatter_list
 m1_data = m.scatter_list(None)

 print("Slave node {}: data len: {}".format(m.rank, len(m1_data)))

 # Gather using the gather_list function
 m.gather_list(m1_data, num_pts)

We need to make sure that we finalise MPI otherwise
we will get an error on exit
m.done()

Module reference

Serialisation

Class Registration

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 anamnesis documentation

 		
 Tutorials

 		
 Serialisation

 		
 Tutorial 1 - Using a Simple Serialised Object

 		
 Tutorial 2 - More advanced serialisation features

 		
 Tutorial 3 - AnamCollections - dealing with many similar objects

 		
 Tutorial 4 - The Store class - saving data quickly

 		
 MPI

 		
 Tutorial 1 - Broadcasting classes using MPI

 		
 Tutorial 2 - Sending to/from different nodes

 		
 Tutorial 3 - Scattering and Gathering data

 		
 Module reference

 		
 Serialisation

 		
 Class Registration

_images/test_classes1.png
file Window Help
Name Value Type Shape
person (class test_ciasses1.SimplePerson <type ‘str> ()
name Fred <type'str> ()
age a2 int6a 0

U S

HDFS Attributes

